
ÍNDICE DE VULNERABILIDADE ÀS MUDANÇAS CLIMÁTICAS E PLANO DE ADAPTAÇÃO

CIDADE DE FORTALEZA, ESTADO DO CEARÁ

Caderno de Anexos

FACILIDADE DE INVESTIMENTO PARA A AMÉRICA LATINA AGÊNCIA FRANCESA DE DESENVOLVIMENTO (AFD) BANCO DE DESENVOLVIMENTO DA AMÉRICA LATINA (CAF) PREFEITURA MUNICIPAL DE FORTALEZA (PMF)

1ª Versão: dezembro/2020

ANEXO 1

Metodologia

A metodologia aplicada tem como fundamento os conceitos teóricos de risco e vulnerabilidade climática apresentados no próximo capítulo e aplicado ao contexto específico de Fortaleza.

Base conceitual

De acordo com o 5º Relatório de Avaliação (AR5) do Painel Intergovernamental sobre Mudanças Climáticas (IPCC1 2014), as variáveis envolvidas para a avaliação do risco climático apresentam-se na figura seguinte.

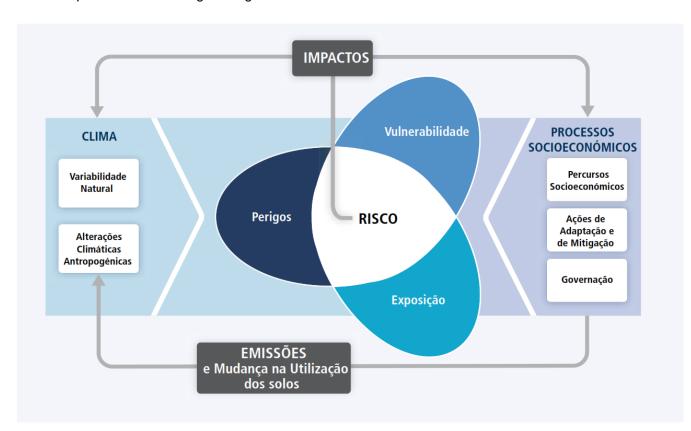


Figura 1: Diagrama das variáveis que influenciam os riscos climáticos Fonte: IPCC, 2014

O AR5 coloca o risco climático no centro da tomada de decisões relacionada às mudanças climáticas e se vê influenciado por diversas variáveis como mostrado na figura acima. O risco climático se determina pela relação entre os perigos, a exposição e a vulnerabilidade. O clima e

¹ IPCC sigla em inglês do Intergovernmental Panel on Climate Change

as alterações climáticas impulsionam os perigos das mudanças climáticas, e os processos socioeconômicos influenciam de maneira transversais na vulnerabilidade e na exposição.

A definição das variáveis envolvidas na avaliação do risco climático é feita continuamente, as quais são apresentadas (IPCC, 2014):

— Impacto: Efeito no sistema das condições climáticas e eventos climáticos extremos e das alterações climáticas nos sistemas natural e humano. Os impulsionadores de impactos relacionados com o clima são:

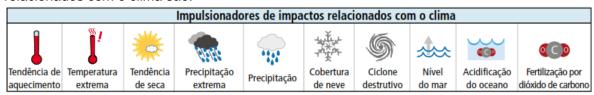


Figura 2: Impulsionadores de impactos relacionados com o clima a nível global

Fonte: IPCC, 2014

- Risco: A probabilidade de eventos ou tendências perigosas relacionados com as alterações climáticas com consequências onde algo de valor está em jogo e onde o resultado é incerto, reconhecendo a diversidade dos valores. O risco resulta da interação entre:
 - Perigo: Ocorrência potencial de um evento físico ou o efeito de uma alteração climática que possam causar perda de vidas, ferimentos ou outros impactos para a saúde ou danos nas propriedades, infraestruturas, meios de subsistência, prestação de serviços, ecossistemas e recursos ambientais.
 - Vulnerabilidade: Propensão ou predisposição a ser afetado negativamente. A vulnerabilidade compreende uma variedade de conceitos e elementos que incluem:
 - Sensibilidade: Grau de impacto de um sistema de maneira adversa ou benéfica, relacionado com as variações do clima.
 - Capacidade de adaptação: Capacidade dos sistemas para se ajustarem ao clima real ou projetado e seus efeitos. Nos sistemas humanos, a adaptação tenta moderar ou evitar danos ou aproveitar as oportunidades benéficas. Em alguns sistemas naturais, a intervenção humana pode facilitar o ajuste ao clima projetado e seus efeitos.
 - Exposição: A presença de pessoas, modos de vida, espécies e ecossistemas, funções ou serviços ambientais e recursos, infraestrutura, elementos econômicos, sociais e culturais que poderiam ser afetados.
- Clima, Alterações Climáticas: Alteração do clima que persiste durante um longo período e que é originado por processos internos naturais (variabilidade natural) ou forçamento externo da atividade humana (alterações climáticas antropogênicas).
- Processos Socioeconômicos: Alterações nos processos socioeconômicos como as mudanças nos percursos socioeconômicos, as ações de adaptação e de mitigação e a governação dos impactos e dos riscos climáticos.

O risco climático depende, então, da exposição a um perigo específico, assim como da sensibilidade e da capacidade de adaptação. Dessa forma, para o cálculo do Índice de Risco Climático considera-se a fórmula seguinte:

$$IRC_{x} = \frac{E * S}{CA}$$

Onde,

= Índice de Risco Climático para um perigo específico IRC_x

Ε = Exposição (a um perigo específico)

S = Sensibilidade

CA = Capacidade de adaptação

Os resultados obtidos com a aplicação desta fórmula para cada um dos perigos são à base da avaliação do risco da cidade de Fortaleza, conforme descrito na sequência, passo a passo.

Cabe ressaltar que as combinações necessárias para os cálculos foram realizadas em ambiente de Sistema de Informação Geográfica (SIG), pelo método da Álgebra de Mapas, o que garante a confiabilidade na aplicação dos cálculos.

Aplicação da metodologia na cidade de Fortaleza

Escopo do estudo

O escopo do estudo é definido pelos seguintes níveis:

 Geográfico: O estudo abrange toda a cidade de Fortaleza. Não integra a zona oceânica e possíveis impactos no oceano e suas características.

Considerando a heterogeneidade socioeconômica e fisiográfica do território de Fortaleza, a setorização adotada é a divisão por bairros.

A avaliação do risco climático também adota a divisão em bairros de Fortaleza para análise a partir do cruzamento das características fisiográficas (Exposição) com as informações socioeconômicas (Sensibilidade) e com informações de gestão do território (Capacidade de Adaptação).

- Temporal: O estudo abrange como período de referência de 2005 a 2015 para as análises de vulnerabilidade atual, além de projeções de cenários de 2040 e 2100. Para alguns dos dados não existem informações desde 2005, o que não permite que sejam comparáveis no período de 2005 até 2015. Nesse caso se aplicou os dados mais recentes.
- Temático: O estudo integra uma análise da cidade de Fortaleza e os impactos na infraestrutura e a população da cidade. As áreas de impacto consideradas são o desenvolvimento da cidade, a infraestrutura existente, a saúde da população, assim como fauna e flora de Fortaleza, os recursos hídricos e as áreas de conservação.

Etapas do processo

O processo para determinar o risco climático de Fortaleza, incluindo a vulnerabilidade da cidade, divide-se em quatro etapas descritas nos seguintes parágrafos.

1. Formação da Mesa Técnica

Para contribuir no processo de desenvolvimento dos estudos necessários ao Índice de Vulnerabilidade de Fortaleza foi composta uma Mesa Técnica formada por 30 especialistas de 24 diferentes instituições e da sociedade civil (ver Anexo 2). O processo de formação da Mesa Técnica contou com as indicações da prefeitura e escolha de profissionais mais experientes no tema.

A Mesa Técnica tem como objetivo primordial acompanhar o desenvolvimento do trabalho realizado pela equipe técnica, contribuindo com conteúdo que julgarem relevantes, mas

também visando proporcionar um maior contato da equipe técnica com as instituições e organizações, facilitando assim a coleta de dados.

Esta mesa se reúne sempre que a equipe técnica considera necessário para disponibilizar informações, ou quando se faz necessária a validação de produtos desenvolvidos pela equipe técnica.

Assim, durante o projeto se desenvolveu as seguintes reuniões com a Mesa Técnica nas etapas importantes do projeto:

- 14 de março 2018: Primeira reunião da mesa técnica para a apresentação do
- 11 de maio 2018: Segunda reunião da mesa técnica para a apresentação da metodologia e da definição dos indicadores do estudo.
- 20 de junho 2018: Terceira reunião da mesa técnica com a apresentação do informe 1.
- 27 de novembro 2018: Quarta reunião da mesa técnica com a apresentação da versão final do informe 1 e 2.

A descrição detalhada sobre as reuniões com a Mesa Técnica, assim como as atas de reuniões, registros fotográficos e folhas de assinatura de todas as reuniões se encontram em documentos à parte denominados Cadernos de Subsídios.

2. Levantamento de dados

Com base no conceito de risco climático de Fortaleza procedeu-se a obtenção de dados, comparando-os e agregando-os para uma melhor leitura da realidade, podendo-se assim apontar cenários mais precisos e adaptados à realidade da cidade.

O estudo contou, portanto, com três formas de levantamento de dados:

- Coleta de dados institucionais: realizada junto as instituições e organizações com renomado conhecimento acerca do assunto. Os dados foram solicitados oficialmente às instituições (ver lista abaixo) elencadas pela equipe técnica e representantes da prefeitura (Secretaria de Urbanismo e Meio Ambiente - SEUMA). A equipe técnica se reuniu com os representantes das organizações, que também são aqueles que participam da mesa técnica, explicitando o que de mais importante deveria ser disponibilizado, garantindo assim a qualidade do material analisado. Os dados institucionais foram coletados das seguintes fontes de informação:
 - Companhia de Água e Esgoto do Estado do Ceará (CAGECE) A CAGECE é a empresa de saneamento básico do estado brasileiro do Ceará com sede em Fortaleza.
 - Capitania dos Portos Uma capitania do porto é um órgão de autoridade marítima junto de um determinado porto (Mucuripe), normalmente também exercendo jurisdição na área marítima envolvente ao mesmo.
 - Companhia de Gestão dos Recursos Hídricos do Ceará (COGERH).
 - Defesa Civil responsável pelo conjunto de ações preventivas, de socorro, assistenciais e reconstrutivas, destinadas a evitar ou minimizar os desastres naturais e os incidentes tecnológicos, preservar o moral da população e restabelecer a normalidade social.

- GBFor Empresa de consultoria em sustentabilidade do ambiente construído.
- Instituto de Planejamento de Fortaleza (Iplanfor) O Iplanfor é uma autarquia municipal com o propósito de atuar na Geração do Conhecimento, Monitoramento e Avaliação de Políticas Públicas, Articulação do Planejamento Estratégico e Participativo e Fomento de Iniciativas Inovadoras.
- Departamento de Engenharia de Pesca da Universidade Federal do Ceará (UFC) –
 Dedicado à pesquisa na área de engenharia de pesca.
- Departamento de Física, setor de Mudanças Climáticas da Universidade Estadual do Ceará (UECE) - Dedicado à pesquisa na área de física.
- Departamento de Planejamento Urbano da UFC Dedicado à pesquisa na área de planejamento urbano.
- Fundação Cearense de Meteorologia e Recursos Hídricos (Funceme) é uma fundação de pesquisa brasileira mantida pelo governo do estado do Ceará. Existe desde 1974 e desenvolve estudos sobre a meteorologia e os recursos hídricos do estado.
- Jornal Diário do Nordeste Jornal de circulação estadual com fatos e notícias sobre o Ceará e, por conseguinte, Fortaleza
- Jornal O POVO Jornal de circulação estadual com fatos e notícias sobre o Ceará e, por conseguinte, Fortaleza
- Secretaria Municipal de Conservação e Serviços Públicos (SCSP) A SCSP é responsável por planejar, coordenar, disciplinar, executar e orientar as políticas públicas de mobilidade urbana, trânsito, transporte público urbano, limpeza urbana e iluminação pública, regular as concessões de serviços públicos, coordenar a execução das atividades pertinentes ao Sistema Nacional de Metrologia; planejar, coordenar, controlar e monitorar as atividades de serviços urbanos do Município, zelando pelas áreas municipais.
- Secretaria Municipal da Infraestrutura (SEINF)— A SEINF é o órgão responsável pela elaboração e fiscalização de projetos de engenharia da prefeitura
- Secretaria do Estado do Meio Ambiente (Sema) tem como responsabilidades elaborar, planejar e implementar a política ambiental do Estado; monitorar, avaliar e executar a política ambiental do Estado; promover a articulação interinstitucional de cunho ambiental nos âmbitos federal, estadual e municipal; propor, gerir e coordenar a implantação de Unidades de Conservação sob jurisdição estadual; coordenar planos, programas e projetos de educação ambiental; fomentar a captação de recursos financeiros através da celebração de convênios, ajustes e acordos, com entidades públicas e privadas, nacionais e internacionais, para a implementação da política ambiental do Estado; propor a revisão e atualização da legislação pertinente ao sistema ambiental do Estado; coordenar o sistema ambiental estadual; analisar e acompanhar as políticas públicas setoriais que tenham impacto ao meio ambiente; articular e coordenar os planos e ações relacionados à área ambiental; exercer outras atribuições necessárias ao cumprimento de suas finalidades nos termos do regulamento.
- Superintendência Estadual do Meio Ambiente (Semace) autarquia vinculada à Sema, que tem a responsabilidade de executar a Política Ambiental do Estado do Ceará, e integra, como órgão seccional, o Sistema Nacional de Meio Ambiente (Sisnama).
- Secretaria Municipal de Urbanismo e Meio Ambiente (Seuma) tem por competência geral planejar e controlar o ambiente natural e o ambiente construído de Fortaleza.

- Autarquia de Urbanismo e Paisagismo de Fortaleza (URBFOR) tem como finalidade executar as políticas públicas relacionadas à conservação e manutenção do ambiente natural do Município, com foco na arborização, paisagismo e manutenção da rede de drenagem natural da cidade.
- VERDELUZ tem como missão suscitar o pensamento crítico e complexo acerca das relações humanas com o ambiente, consigo mesmo e com seus semelhantes.

Parte das instituições atenderam prontamente as solicitações, enquanto algumas outras não disponibilizaram seus materiais, ainda que tenham se comprometido com a equipe. Contudo, não foram identificados quaisquer registros de projeções de cenários para Fortaleza, tampouco os planejamentos existentes incorporaram este fator como determinante nas análises.

Sobre os materiais recebidos é válido ressaltar que os planos, projetos e programas disponibilizados não apresentaram as mudanças climáticas como foco das análises, sendo, em alguns casos, mencionadas como fator de preocupação, como no caso do "Fortaleza 2040".

- Coleta de dados bibliográficos: coube à equipe técnica rastrear dados bibliográficos disponíveis em sites oficiais de instituições que dialogam com o tema do estudo. Foram encontradas dissertações, teses, estudos exploratórios, dados compilados, gráficos, tabelas, índices, projeções, reportagens, dentre outros dados, possibilitando-se assim a construção de um histórico das mudanças climáticas na cidade e uma caracterização fiel do atual estado de vulnerabilidade de Fortaleza. Os documentos considerados neste estudo são listados na Bibliografia.
- Oficinas participativas: optou-se pela realização de oficinas participativas junto com a Mesa Técnica e a população. As oficinas têm como objetivo dar voz a população quanto a sua realidade, visto que as necessidades pontuais dos habitantes da cidade se dão no dia a dia, no convívio com as problemáticas recorrentes. Ao todo foram realizadas 2 oficinas, sendo que nas duas aplicou-se a matriz PEIR – Pressão, Estado, Impacto e Resposta.

3. Caracterização de Fortaleza

Caracterização climática

Para a caracterização da informação meteorológica histórica em Fortaleza foram utilizados os dados disponíveis para a estação meteorológica de Fortaleza do Instituto Nacional de Meteorologia do Brasil (INMET). Os dados disponibilizados pela Fundação Cearense de Meteorologia (FUNCEME) não estavam completos para todos os anos no quesito temperatura e, por isso, optou-se por usar os dados doe INMET para ter a mesma base para todos os dados meteorológicos históricos.

As análises da informação meteorológica foram realizadas com base nas informações disponíveis para os anos de 1961 a 2017, de forma a identificar as tendências de longo prazo. As bases temporais das análises específicas para a temperatura e precipitação foram os anos de 1981 a 2010, permitindo a compatibilidade dos dados e informações para a modelagem dos cenários de mudanças climáticas.

Para a determinação das projeções de mudanças climáticas, se intentou receber informações

locais dos expertos da Mesa Técnica. Depois de vários intentos de receber alguma informação especifica sem resultado, se decidido usar as informações disponíveis a nível internacional. Por isso realizou-se análises de séries temporais dos conjuntos de dados dos cenários climáticos existentes a nível internacional e usados para as previsões do IPCC no AR5. Para isso se usou os dados do KNMI Climate Explorer (ver sitio eletrônico http://climexp.knmi.nl), que integra diferentes modelos climáticos e permite a utilização das informações específicas para um lugar determinado através das coordenadas geográficas. Se uso o dataset CMIP5 (IPCC AR5 Atlas subset) mais no KNMI Climate Explorer o dataset CORDEX usado em outros estudos não include informações para Brasil. O dataset CMIP5 e um modelo global que include vários modelos que permite selecionar datos, tablas de time series y mapas por coordenadas geográficos que permiten chegar a conclusões especificas para a cidade de Fortaleza.

Com base nessas variáveis se determinou os cenários de mudanças climáticas levando em conta os cenários RCP4.5 (cenário mediano) e RCP8.5 (cenário alto) e os períodos de 2035-2045 e 2071-2100 para os parâmetros de temperatura e precipitações para os quatro trimestres do ano. Isso permite interpretar as mudanças esperadas a nível climático para Fortaleza em relação às temperaturas, precipitações e secas.

As incertezas² dos cenários climáticos são representadas nas séries temporais e mapas conforme explicação a seguir:

— Séries temporais: Os gráficos das séries temporais apresentam as incertezas do modelo através dos gráficos de caixa, a direita da figura, que mostram os percentis 5, 25, mediana, 75 e 95 da distribuição da média dos 20 anos da série temporal. Isso inclui a variabilidade natural assim como a distribuição dos modelos. A Figura 3 ilustra a interpretação dos gráficos usados para apresentar os cenários climáticos.

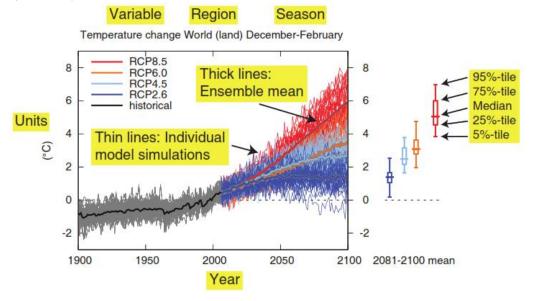


Figure AI.1 | Explanation of the features of a typical time series figure presented in Annex I.

Figura 3: Explicações das informações das séries temporais Fonte: IPCC, 2013b3

² O IPCC apresenta em detalhes as avaliações das incertezas no Anexo 1 do Atlas of Global and Regional Climate Projections, este documento encontra-se disponível em seu sítio eletrônico:

http://www.climatechange2013.org/images/report/WG1AR5_Annexl_FINAL.pdf nas_páginas 1314 e 1316 (Tradução do gráfico) Figura Al.1 - Explicação das características de um gráfico típico de séries temporais. Na parte superior traz as informações da variável, região e época analisadas, neste exemplo gráfico a variável analisada é a alteração na temperatura, a região é global (terrestre) e a época dezembro-fevereiro. O eixo x refere-se ao tempo, em anos. O eixo y refere-se

 Mapas: Os mapas também incluem as incertezas inerentes aos cenários climáticos. As áreas hachuradas nos mapas indicam as áreas em que o cenário apresenta baixa confiança. Isso pode ser por uma mudança muito pequena nos cenários avaliados ou por modelos que resultaram em cenários muito divergentes. A Figura 4 ilustra a interpretação dos dados apresentados nos mapas.

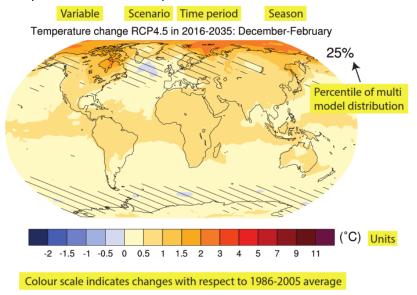


Figure Al.2 | Explanation of the features of a typical spatial map presented in Annex I. Hatching indicates regions where the magnitude of the 25th, median or 75th percentile of the 20-year mean change is less than 1 standard deviation of model-estimated natural variability of 20-year mean differences.

Figura 4: Explicações das informações dos mapas.

Fonte: IPCC, 2013b4

Com respeito ao aumento do nível do mar, houve a tentativa de obter informações locais com os especialistas da Mesa Técnica. Depois de várias tentativas de receber alguma informação específica, porém sem resultado, optou-se por usar as informações disponíveis a nível regional e internacional. Desta forma, foram utilizadas as informações do IPCC e da Universidade Federal do Ceará (UFC).

Caracterização das condições atuais

Com as informações coletadas a partir das etapas citadas acima, a equipe técnica construiu uma leitura da realidade atual da cidade de Fortaleza, através de mapas, gráficos, tabelas, textos e imagens, demonstrando a evolução da cidade nesses aspectos e apontando seus riscos e vulnerabilidades passados e atuais, o que também permite a projeção dos riscos e da vulnerabilidade futura.

Para a caracterização do município de Fortaleza foram aferidos e descritos um total de 11

à unidade de medida da variável analisada, que, no caso de alteração na temperatura, a unidade está em graus celsius (°C). As linhas representam os resultados obtidos para os diversos cenários analisados, sendo que as linhas finas representam as simulações individuais e as linhas grossas representam a média do conjunto. Na lateral direita é apresentada a análise estatística em forma de diagrama de blocos para um período definido, que neste exemplo é de 2081-2100. O diagrama de blocos traz as informações de mediana (traço central), 1º quartil (parte inferior do retângulo), 3º quartil (parte superior do retângulo), percentil 5 (traço inferior) e percentil 95 (traço superior).

⁴ (Tradução do mapa) Figura Al.2 – Explicação das características de um mapa típico de espacialização de uma variável. Na parte superior do mapa são apresentados a variável, o cenário, o período de tempo e a época analisados, neste exemplo gráfico a variável é a alteração na temperatura, o cenário retratado é o RCP4.5, o período de 2016-2035 e a época de dezembro-fevereiro. A porcentagem apresentada no canto superior direito refere-se ao percentil dos dados representado no mapa. As cores demontram a graduação das mudanças esperadas para a variável analisada em relação à média do período de 1986-2005, que neste caso representam o gradiente de alteração da temperatura, sendo apresentada em graus celsius (°C).

indicadores para 3 variáveis a saber: Exposição, Sensibilidade e Capacidade de Adaptação:

- Exposição: Os indicadores de exposição refletem as características territoriais da zona de estudo, incluindo os antecedentes históricos de eventos climáticos ocorridos, sendo eles:
 - 1. Áreas historicamente afetadas por desastres climáticos (E1);
 - 2. Infraestrutura hídrica (E2);
 - Áreas verdes protegidas (E3);
 - 4. Áreas diretamente afetadas pela dinâmica costeira (E4);
 - 5. Taxa de atendimento da rede de esgotamento sanitário (E5).
- Sensibilidade: Os indicadores de sensibilidade trazem informações que refletem questões socioeconômicas relevantes e que poderão agravar os efeitos climáticos futuros na cidade, sendo eles:
 - 1. Densidade demográfica (S1);
 - 2. IDH por bairros (S2);
 - 3. Zona Especial de Interesse Social ZEIS (S3).

Cabe ressaltar que as ZEIS são áreas definidas pelo Plano Diretor e Lei de Uso e Ocupação do Solo da cidade.

- Capacidade de adaptação: Os indicadores de capacidade de adaptação fornecem informações sobre os instrumentos que o município tem para gerenciar e se preparar para potenciais impactos climáticos futuros. Os indicadores consideram as ferramentas e os sistemas de planejamento e gestão preventiva atualmente em execução, conforme listado a seguir:
 - 1. Ações de planos de manejo de unidades de conservação e áreas verdes em execução para o perigo Aumento da temperatura (CA1):
 - 2. Projetos de captação de fontes alternativas de abastecimento em execução para o perigo Secas (CA2);
 - 3. Projetos de Drenagem e/ou contenção de cheias em execução para o perigo Chuvas Extremas (CA3):
 - 4. Projetos de contenção do avanço do mar em execução para o perigo Elevação do Nível do Mar (CA4).

Entende-se que estes indicadores cobrem os diversos aspectos específicos de Fortaleza e incluem também os diferentes fatores definidos pelo IPCC no AR5 no tocante aos riscos oriundos das alterações climáticas.

Vale ressaltar que as justificativas técnicas para cada um dos indicadores podem ser encontradas no Anexo 3.

4. Risco e Vulnerabilidade de Fortaleza

Com base na caracterização e considerando as especificidades e condições locais de Fortaleza, foi possível identificar para cada perigo relevante o risco climático atual e futuro em relação às variáveis da exposição, sensibilidade e da capacidade de adaptação. Para a situação futura adota-se:

— Cénario climático: RCP 8.5 como e o cénario mais pessimista e permita a adaptação os impactos mais importantes estimados e resultar em uma resiliência máxima da cidade.

— Horizonte temporais: 2040 por que existe o trabalho de Fortaleza 2040 que permite usar sinergias e integrar os resultados no planejamento das atividades do projeto de Fortaleza 2040.

A Figura 5, baseada na abordagem do WG II, AR5, IPCC 2014, indica a lógica metodológica levando em conta as caracterizações e seus indicadores respectivos.

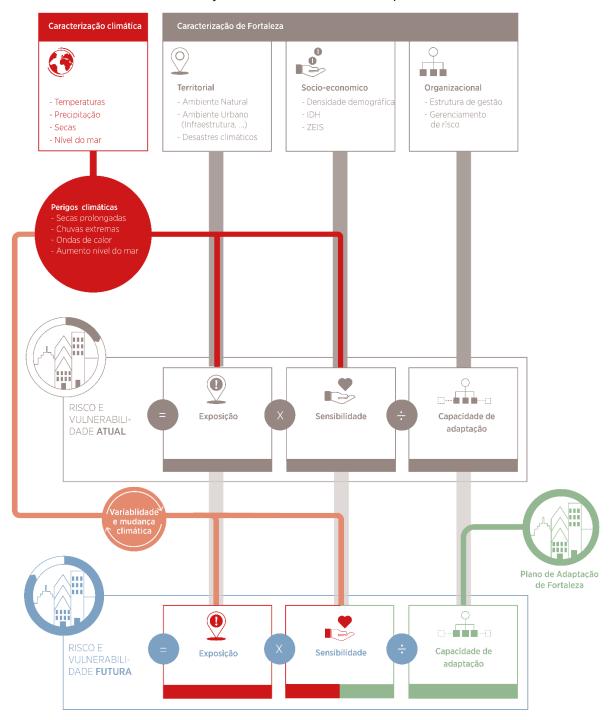


Figura 5: Lógica de cálculo do risco climático para Fortaleza. Fonte: Elaboração Própria.

Cálculo do Índice de Risco Climático Atual

Identificação dos perigos

Com base nas informações climáticas de Fortaleza pode-se excluir os seguintes impulsionadores:

- Cobertura de neve: Fortaleza não está em uma zona de neve e, por consequência, esse impacto não é considerado nas análises de risco e vulnerabilidade.
- Acidificação do oceano: O estudo de risco e vulnerabilidade de Fortaleza se enfoca no território da cidade (parte terrestre) e se excluem as alterações no oceano.
- Fertilização por dióxido de carbono: O estudo de risco e vulnerabilidade de Fortaleza se enfoca na cidade e se excluem as alterações no setor de agricultura.

Com base nas informações pesquisadas para Fortaleza se pôde identificar a relevância dos diversos impactos e suas áreas de impacto, conforme descrito a seguir:

- Desenvolvimento da cidade: Isso inclui o planejamento e a evolução da cidade;
- Infraestrutura: inclui a infraestrutura de transporte, hídrica, de saúde e educacional;
- Saúde: include a saúde humana e dos animais;
- Recursos hídricos e disponibilidade de água;
- Unidades de conservação: inclui as áreas verdes protegidas.

Para cada impulsionador de impacto e área de impacto se determinou a relevância para a situação específica de Fortaleza, conforme apresentado a seguir:

Impulsionadores de Impactos Area de impacto	Tendência de Aquecimento	Temperatura externa (ondas / ilhas de calor)	Tendência de seca	Alterações na precipitação	Precipitação extrema	Aumento do nível do mar	Tornado / Ventos Fortes
Desenvolvimento da cidade	baixa	baixa	media	media	media	alta	baixa
	relevância	relevância	relevância	relevância	relevância	relevância	relevância
Infraestrutura	baixa	baixa	media	alta	alta	media	baixa
	relevância	relevância	relevância	relevância	relevância	relevância	relevância
Saùde	baixa	media	media	media	alta	baixa	baixa
	relevância	relevância	relevância	relevância	relevância	relevância	relevância
Hídricos e disponibilidade de água	media	baixa	alta	alta	media	baixa	baixa
	relevância	relevância	relevância	relevância	relevância	relevância	relevância
Unidades de conservação	media	baixa	baixa	baixa	media	media	baixa
	relevância	relevância	relevância	relevância	relevância	relevância	relevância

Figura 6 - Matriz de impactos e área de impacto da cidade de Fortaleza. Fonte: Elaboração Própria

Para a determinação do risco e da vulnerabilidade de Fortaleza se determinou os impulsionadores de impactos que foram identificados de média e alta relevância, sendo eles:

- Tendência de aquecimento
- Temperatura extrema (ondas / Ilhas de calor)
- Tendência de seca
- Precipitação
- Precipitação extrema
- Aumento do nível do mar

Vale ressaltar que a matriz de relevância foi estabelecida junto aos expertos da Mesa Técnica. A partir da definição da matriz foi possível definir os perigos pertinentes para a cidade de Fortaleza, que são:

- Aumento da Temperatura: A tendência de aquecimento e as temperaturas extremas podem causar alterações na saúde das pessoas da cidade, especialmente da população vulnerável. Também pode causar danos aos ecossistemas e biodiversidade, além dos recursos hídricos e das áreas preservadas;
- Secas prolongadas: As secas são identificadas como um perigo importante em Fortaleza, impactando tanto pelas tendências de seca como da mudança no regime de precipitações. As secas podem causar alterações nos meios de subsistência e na disponibilidade de água na cidade. Também tem consequências para a saúde, infraestrutura e o desenvolvimento da cidade.
- Chuvas extremas: A mudança no regime de precipitações poderá resultar em uma maior incidência de chuvas extremas. As chuvas extremas oferecem um perigo importante na infraestrutura e no desenvolvimento da cidade, na vida e saúde das pessoas, assim como nos recursos hídricos. Também tem um impacto nos recursos ambientais como as unidades de conservação e a biodiversidade.
- Elevação do nível do mar: O aumento do nível do mar oferece perigo principalmente no desenvolvimento da cidade e da infraestrutura nas áreas próximas ao litoral, além de algumas unidades de conservação, manguezais e sua biodiversidade.

Esses quatro perigos e seus impactos são integrados nas avaliações do Risco e Vulnerabilidade da cidade de Fortaleza conforme apresentado a seguir.

Cálculo da Exposição

A partir do conceito de cálculo de risco e vulnerabilidade e com a definição dos perigos e seus impactos, foram construídos os mapas referentes à Exposição em relação a cada um destes perigos.

Para isso, considerando os dados disponíveis para o Município de Fortaleza, bem como análises cartográficas referentes aos indicadores no território, adotou-se uma abordagem quantitativa onde foram atribuídos pesos aos indicadores conforme tabela a seguir.

Tabela 1 - Indicadores de Exposição e seus respectivos Pesos

INDICADORES DE EXPOSIÇÃO	CONDIÇÃO	PESO
Áreas historicamente afetadas por desastres climáticos (E1)	Sim	2

O bairro tem registro histórico de desastres climáticos (inundações, deslizamentos, enchentes, dentre outros)?	Não	1
Infraestrutura hídrica (E2)	Sim	1
O bairro conta com rede regular de abastecimento de água?	Não	2
Áreas verdes protegidas (E3)	Sim	1
O bairro conta com ambiente natural (áreas verdes, dunas, lagoas) preservado?	Não	2
Áreas diretamente afetadas pela dinâmica costeira (E4)	Sim	2
O bairro tem interface direta com o mar, estuários ou foz de rio?	Não	1
Infraestrutura de saneamento (E5)	Sim	1
O bairro conta com rede regular de esgotamento sanitário?	Não	2

Fonte: Elaboração Própria

O estabelecimento destes pesos propiciou o cruzamento das informações dos indicadores de natureza distintas, bem como evidenciou as diferenças existentes no território em relação a cada um dos impactos.

Uma vez que as exposições são distintas, a depender do impacto analisado, o próximo passo foi identificar os indicadores diretamente afetados por cada um dos impactos, e realizar o cruzamento entre os seus pesos correspondentes em ambiente SIG, conforme apresentado na tabela abaixo.

Tabela 2 - Cruzamento dos pesos dos indicadores de acordo com cada um dos impactos

Indicadores de Exposição		Exposição ao Aumento da Temperatura	Exposição as Chuvas Intensas	Exposição as Secas prolongadas	Exposição a Elevação do Nível do Mar
Áreas historicamente afetadas por desastres climáticos	E1				
Infraestrutura hídrica	E2				
Áreas verdes protegidas	E3	(E2) * (E3 ²) * (E5)	(E1 ²) * (E3) * (E5)	(E2 ²) * (E3) * (E5)	(E3) * (E4 ²) * (E5)
Áreas diretamente afetadas pela dinâmica costeira	E4				
Infraestrutura de saneamento	E5				

Fonte: Elaboração Própria

Com a realização da operação algébrica entre os pesos dos indicadores (que variavam entre 1 ou 2), os resultados obtidos variam em uma faixa entre 1 e 16, uma vez que foi atribuído "peso ao quadrado" para os indicadores mais relevantes de acordo com o perigo analisado. Por exemplo, para o perigo do Aumento da Temperatura foi atribuído "peso ao quadrado" para o indicador E3 - Áreas verdes protegidas, devido a importância da cobertura vegetal para o perigo em análise.

Uma vez realizadas as operações algébricas em ambiente SIG, obteve-se como resultado os índices de Exposição para cada um dos perigos (na faixa 1-16) e para representar espacialmente, esses valores foram subdivididos em 03 faixas proporcionalmente distribuídas, conforme apresentado na Tabela 3.

Tabela 3 - Representação cartográfica da Exposição de Fortaleza às mudanças climáticas

Representação cartográfica					Faixa	Índice
Baixa Exposição	(1)	(2)	(3)	(4)	1 – 5	1
Média Exposição	(1)	(2)	(3)	(4)	6 – 10	2
Alta Exposição	(1)	(2)	(3)	(4)	11 – 16	3

Nota: (1) – Aumento de temperatura | (2) – Secas prolongadas | (3) – Chuvas extremas | (4) – Elevação do nível do mar. Fonte: Elaboração Própria

Cálculo da Sensibilidade

Para o cálculo da Sensibilidade foi aplicada a mesma lógica, porém, por se tratar de indicadores socioeconômicos, eles se aplicam igualmente a todos os impactos e, portanto, foi construído um único mapa de Sensibilidade. Cabe ressaltar a escolha do Indicador "ZEIS" por se tratarem de Zonas Especiais de Interesse Social cujo mapeamento evidencia as áreas mais sensíveis da cidade somado a um contexto de agravamento do ponto de vista socioeconômico.

Também devido à natureza diferente de cada um dos indicadores foi estabelecido um peso para ponderação de cada um dos indicadores de Sensibilidade, variando de 1 a 3 para os indicadores S1 e S2 e variando de 1 a 2 para o indicador S3, conforme apresentado a seguir.

Tabela 4 - Indicadores de Sensibilidade e seus respectivos Pesos

INDICADORES DE SENSIBILIDADE	CONDIÇÃO	PESO
	< 100 hab/km²	1
Densidade Demográfica (S1)	> 101 e < 200 hab/km²	2
	> 200 hab/km ²	3
	< 0,5	3
IDH por Bairro (S2)	= 0,5 e < 0,7	2
	> 0,7	1
ZEIS	Sim	2
ZLIO	Não	1

Fonte: Elaboração Própria

Com o estabelecimento destes pesos foi possível realizar o cruzamento das informações dos indicadores de natureza distintas, bem como evidenciar as diferenças existentes no território de modo a compor uma base de dados em ambiente de SIG, cujo cálculo se deu a partir da operação descrita na sequência.

Tabela 5 - Operação entre indicadores de sensibilidade

Indicadores de Sensibilidade		Cálculo da Sensibilidade
Densidade Demográfica	S1	
IDH por Bairros	S2	(S1) * (S2) * (S3)
ZEIS	S3	

Fonte: Elaboração Própria

Com a realização da operação algébrica entre os indicadores, os resultados variaram entre 1 a

18. Para representá-los cartograficamente, os resultados foram distribuídos em três níveis de Sensibilidade, a partir de uma divisão em três faixas distribuídas proporcionalmente, conforme apresentado a seguir.

Tabela 6 - Representação cartográfica da Sensibilidade de Fortaleza às Mudanças Climáticas

Representação cartográfica	Faixa	Índice
Baixa Sensibilidade	1 – 6	1
Média Sensibilidade	7 – 12	2
Alta Sensibilidade	13 - 18	3

Fonte: Elaboração Própria

Cálculo da Capacidade de Adaptação

O processo de cálculo da Capacidade de Adaptação de Fortaleza passou por algumas modificações em razão da cidade não possuir medidas planejadas ou em execução no tocante à adaptação às mudanças climáticas.

Inicialmente havia a previsão de verificação de quatro indicadores, sendo cada um deles correspondente a um perigo específico. Como a cidade não possuía tais indicadores, a segunda alternativa foi verificar aspectos institucionais de gestão e financeiros, com a intenção de aproveitar planos, projetos e medidas que pudessem ser potencializados enquanto futura capacidade de adaptação. Porém, ainda havia o desafio de incorporar estas informações no cálculo do índice de Risco e Vulnerabilidade, especialmente por se tratar do fator de divisão da fórmula do Índice de Risco Climático.

Diante disso, do ponto de vista matemático, a alternativa foi estabelecer coeficientes para a divisão, conforme apresentado a seguir.

Tabela 7 – Indicador de Capacidade de Adaptação e seus respectivos pesos

,		Coeficiente de	
Situação verificada por perigo	Status	Divisão na	Justificativa
		Fórmula	
Os Planos, projetos, medidas atuais ajudarão em casos de eventos extremos pontuais ou	s de		Não se trata de uma medida de adaptação às mudanças climáticas, mas possui potencial para reduzir um pouco o índice de risco e vulnerabilidade
situações atípicas no presente?	Não	1	Não se trata de uma medida de adaptação às mudanças climáticas, e não possui potencial para reduzir o índice de risco e vulnerabilidade

Fonte: Elaboração Própria

A capacidade de adaptação se aplica igualmente a todos os impactos e, portanto, foi construído um único mapa de Capacidade de Adaptação.

Cálculo do Índice de Risco Climático Atual

Para o cálculo do Risco Climático Atual aplicou-se a Álgebra de Mapas por meio da fórmula:

$$IRC_{x} = \frac{E * S}{CA}$$

Onde.

IRC_x = Índice de Risco Climático para um perigo específico

= Exposição (a um perigo específico)

S = Sensibilidade (constante para os perigos analisados)

CA = Capacidade de adaptação (constante para os perigos analisados)

Com a realização da operação algébrica variaram entre 1 a 27. Para representá-los cartograficamente essa faixa de valores foi dividida proporcionalmente em três categorias, correspondentes aos índices de risco climático para cada um dos perigos conforme apresentado a seguir.

Tabela 8 - Representação cartográfica dos Índices de Risco Climático para um perigo específico

Representação cartográfica	Faixa	Índice
Baixo Risco Climático	1 – 9	1
Médio Risco Climático	10 – 18	2
Alto Risco Climático	19 - 27	3

Fonte: Elaboração Própria

Assim resultam quatro mapas de Risco Climático para cada perigo.

A combinação dos quatro mapas de Risco Climático de Fortaleza, referentes a cada perigo, resulta em um mapa de Risco Climático Global para Fortaleza, cuja representação do índice foi registrada como de 1 a 5, conforme indicado a seguir.

Tabela 9 - Representação cartográfica dos Índices de Risco Climático da cidade de Fortaleza

Representação cartográfica	Índice
Baixo Índice de Risco Climático	1
Baixo a Médio Índice de Risco Climático	2
Médio Índice de Risco Climático	3
Médio a Alto Índice de Risco Climático	4
Alto Índice de Risco Climático	5

Fonte: Elaboração Própria

Cálculo do Índice de Risco Climático Futuro

O cálculo do Índice de Risco Climático Futuro parte do Índice de Risco Climático Atual e agrega o componente dos processos socioeconômicos e a variabilidade climática a longo prazo.

Para o Cálculo do Índice de Risco Climático Futuro foi aplicada a mesma metodologia, porém com a incorporação das variáveis de projeção, a saber:

— Para a Exposição são acrescentados aos perigos os valores percentuais de projeções climáticas, utilizando os mesmos indicadores do cálculo do risco atual.

Índice de Vulnerabilidade às Mudanças Climáticas e Plano de Adaptação Fortaleza, Ceará CADERNO DE ANEXOS

A variável de Exposição recebe acréscimos seguindo as projeções climáticas do indicador específico para cada perigo avaliado. As projeções climáticas consideram como horizonte temporal o ano de 2040 e considera-se o cenário RCP8.5.

- Para a Sensibilidade são acrescentados aos cálculos as projeções da densidade demográfica utilizadas no cálculo do risco atual. As projeções deste indicador existem até 2030, então se extrapolou o valor linearmente até 2040. Para os demais indicadores (IDH e ZEIS) não existem previsões ao longo prazo e por isso foi assumido que não há mudanças nestes indicadores.
- Para a Capacidade de Adaptação são acrescentadas as informações oriundas dos projetos estabelecidos no Fortaleza 2040, considerando sua respectiva distribuição geográfica.

A combinação dessas variáveis permite o estabelecimento do Índice de Risco Climático futuro para Fortaleza.

• Definição dos Hotspots

Tomando como base o Mapa de Índice Vulnerabilidade às Mudanças Climáticas, onde são cruzadas todas as variáveis de risco em relação aos quatro perigos, foi possível a identificação dos *hostpots*, ou seja, os pontos do território onde há mais riscos em relação ao total de perigos, sendo eles representados pelas áreas em vermelho (5 - Alta Vulnerabilidade).

ANEXO 2

Participantes da mesa técnica

INSTITUIÇÃO	ESPECIALIDADE TÉCNICA	REPRESENTANTE
SEUMA	Política Ambiental	Edilene Oliveira
COGERH	Segurança Hídrica	Débora Rios Bruno Rebouças
DEFESA CIVIL	Áreas de risco	Francisco Cristiano Ferrer
	Áreas de risco	Saulo Aquino V. Silva
	Áreas de risco	Roger Barreto
FUNCEME	Meteorologia	Margareth Sílvia Benício de Souza Carvalho
GBFOR	Construções sustentáveis	Márcio Rios
IPLANFOR	Urbanismo	Francisca Dalila de Menezes
LABOMAR	Dinâmica Costeira	Lidriana de Souza Marcelo Moro
PESCA UFC	Segurança alimentar	Raimundo Nonato de Lima
PORTO MUCURIPE	Gestão Portuária	Joaquim Bento Cavalcante Jr.
SEINF	Infraestrutura	Lourdes Fiuza
SCSP	Mobilidade	Mariana Gomes
	PAITT	Sued Lacerda
SEMA	Área técnica	Magda Marinho
UECE	Mudanças Climáticas - Física	Alexandre Araújo Costa
URBFOR	Gestão de parques e áreas verdes	Regis Tavares
CONSULTOR	Mudanças Climáticas - Engenharia	Ghislain Favé
CONSULTOR	Geologia	Gustavo Amorim Studart Gurgel
IFCE	Planejamento Urbano	Rossana Barros Silveira
CONSULTOR	Energia	Expedito José de Sá Parente
SEMACE	Licenciamento	Marcelo Diogo Rodrigues
BFA	Economia do Mar	Célio Fernando Bezerra Melo
UFC	Planejamento Urbano e clima	Dra. Maria Elisa Zanella
UFC	Segurança Hídrica	Francisco de Assis de Souza
UFC	Biodiversidade	
VERDELUZ	Direito Ambiental e Tratados Internacionais	Beatriz Azevedo de Araújo
CONSULTOR	Turismo	Anya Ribeiro
	1	

CAGECE	Segurança Hídrica	Jackeline Sales de Melo

Indic	ndicadores para avaliação da exposição, sensibilidade e capacidade de adaptação							
ld.	Nome do Indicador	Justificativa	Fontes de Informação					
E1	Áreas historicamente afetadas por desastres climáticos	Impacto relacionado ao histórico de desastres. (Quanto mais áreas e famílias são afetadas, mais alto é o risco climático)	Defesa Civil de Fortaleza					
E2	Infraestrutura hídrica	Verificação do aspecto segurança hídrica, intensificada com o contexto climático. (Quanto mais fontes de água existem no território, mais baixo é o risco climático)	Companhia de Água e Esgoto do Ceará (Cagece)					
E3	Áreas verdes protegidas	Áreas verdes preservadas contribuem para o controle e amenização do microclima no meio urbano e especialmente nos tempos de ondas de calor. (Quanto mais áreas verdes existem no território, menor o risco climático)	Prefeitura Municipal de Fortaleza (Secretaria Municipal de Urbanismo e Meio Ambiente / Instituto de Planejamento de Fortaleza) Secretaria Estadual de Meio Ambiente (SEMA)					
E4	Áreas diretamente afetadas pela dinâmica costeira	Áreas com maior proximidade da linha costeira requerem atenção especial quanto ao processo de elevação do nível do mar. (Quanto mais próximo do mar, maior o risco climático).	Prefeitura Municipal de Fortaleza (Projeto Orla e Fortaleza 2040)					
E5	Taxa de atendimento da rede de esgotamento sanitário	Uma vez afetada por processos de intrusão marinha (efeito agravado pela elevação do nível do mar), um dos primeiros indícios é a emersão dos efluentes. (Quanto mais redes existem no território menor o risco climático)	Companhia de Água e Esgoto do Ceará (Cagece)					

Índice de Vulnerabilidade às Mudanças Climáticas e Plano de Adaptação Fortaleza, Ceará CADERNO DE ANEXOS

ld.	Nome do Indicador	Justificativa	Fontes de informação
S1	Densidade populacional	Áreas geográficas com maior adensamento poderão ter maiores dificuldades de evasão em caso de desastres climáticos e de impactos climáticos, como ondas de calor. (Quanto maior a densidade populacional da área, maior o risco climático)	Prefeitura Municipal de Fortaleza / Fortaleza 2040
S2	Índice de Desenvolvimento Humano Municipal (IDHM)	Conjunto de indicadores socioeconômicos como fator de sensibilidade. (Quanto mais alto o IDHM, mais baixo é o risco climático)	Prefeitura Municipal de Fortaleza / Fortaleza 2040
S3	Zonas Especiais de Interesse Social - ZEIS	Indicador que demonstra as áreas mais críticas e de condições mais precárias. (Quanto mais áreas estabelecidas como ZEIS, maior o risco climático)	Prefeitura Municipal de Fortaleza / IPLANFOR (2015)

Para os indicadores de Capacidade de Adaptação, cabe ressaltar que como Fortaleza não possui medidas de planejamento especificamente voltadas para adaptação e/ou resiliência à riscos relacionados às mudanças climáticas, foi necessário mapear e estabelecer indicadores tomando como base planos, projetos e ações hoje já existentes no território.

ld.	Nome do Indicador	Perigo Específico	Justificativa	
CA1	Ações de planos de manejo de unidades de conservação e áreas verdes em execução	Aumento da Temperatura	Entende-se que a existência de áreas verdes é grande responsável pela amenização do microclima local, e uma vez que estas áreas possuam planos de manejo, existe uma maior possibilidade de continuarem preservadas nos próximos anos.	Prefeitura Municipal de Fortaleza / Secretaria Municipal de Urbanismo e Meio Ambiente Fortaleza 2040
CA2	Projetos de captação de fontes alternativas de abastecimento em execução	Secas	Apesar de ter uma taxa de cobertura de rede regular de abastecimento de 98%, quase toda a água de Fortaleza vem de um reservatório que atualmente está com 6% de sua capacidade, havendo, portanto, uma grande insegurança hídrica. Assim, entende-se que as áreas onde existe potencial para captação de águas subterrâneas possui uma melhor capacidade de adaptação.	Secretaria de Recursos Hídricos do Estado do Ceará - SRH

ld.	Nome do Indicador	Perigo Específico	Justificativa	
CA3	Projetos de Drenagem e/ou contenção de cheias em execução	Chuvas Extremas	Para verificar a atual capacidade de adaptação de Fortaleza verificou-se quais planos/projetos existiam. O DRENURB foi apontado pela prefeitura como atual plano em execução para conter problemas de alagamentos relacionados à drenagem de águas pluviais.	Secretaria Municipal de Infraestrutura - SEINF
CA4	Projetos de contenção do avanço do mar em execução (CA4)	Elevação do Nível do Mar	Bairros onde existe preservação do ecossistema de praia (dunas, faixa de areia, etc) possuem capacidade de proteger o território contra possíveis avanços do mar. Da mesma forma, a existência de contenções artificiais tais como os espigões e as engordas de praia, reduzem até certo ponto os riscos.	Prefeitura Municipal de Fortaleza / Secretaria Municipal de Urbanismo e Meio Ambiente / Projeto Orla / Fortaleza 2040

ANEXO 4

Famílias afetadas por desastres climáticos em Fortaleza

IDENTIFICAÇÃO DO BAIRROS	Nº DE FAMÍLIAS	TIPO DE EVENTO
20 - Maranguapinho II - Genibaú	1516	Inundação
24 - Maranguapinho I - Granja Portugal / Bom Jardim	990	Inundação
32 - Canal Leste - Granja Lisboa/Bom Jardim	784	Inundação
77 - Vila Velha	748	Inundação
27 - Parque Jerusalém I e II - Canindezinho	690	Inundação
21 - Cuiabá - Autran Nunes	535	Inundação
35 - Comunidade Marrocos - Siqueira	434	Alagamento
31 - Comunidade do Capim - Genibaú	407	Inundação
29 - Jardim Fluminense - Canindezinho	395	Inundação
30 - 8 de dezembro - Canindezinho	356	Inundação
26 - Parque São José - Canindezinho	337	Inundação
23 - Comunidade do Rio - Henrique Jorge	312	Inundação
18 - Beira do Rio I - Autran Nunes	280	Inundação
11 - Sossego/Muriçoca - Quintino Cunha	264	Alagamento
12 - Babuçal - Quintino Cunha	231	Inundação
25 - Comunidade dos Canos - Parque São José	229	Inundação
43 - Canal Presidente Vargas - Parque Presidente Vargas	207	Inundação
33 - Lagoa do Mela-Mela - Granja Portugal	205	Inundação
1 - Morro do Santiago - Barra do Ceará	197	Deslizamento

IDENTIFICAÇÃO	Nº DE FAMÍLIAS	TIPO DE EVENTO
34 - Pantanal do Parque Santo Amaro - Bom Jardim	188	Inundação
28 - Planalto Canindezinho - Canindezinho	182	Inundação
79 - Dunas II - Barra do Ceará	172	Deslizamento
9 - Alto Jerusalém - Quintino Cunha	161	Inundação
99 - Riacho das Pedras - Bonsucesso	155	Inundação
19 - Beco do Cal - Autran Nunes	150	Inundação
36 - Lagoa Azul – Pici	150	Inundação
82 - Açude João Lopes - Monte Castelo	150	Inundação
39 - Carlos Chagas - Bonsucesso	126	Alagamento
78 - Lagoa do Urubu - Floresta	124	Inundação
8 - Ilha Dourada - Quintino Cunha	123	Inundação
40 - Lagoa da Libania - Mondumbim	119	Inundação
22 - Canal da Moçambique - Genibaú	107	Inundação
14 - Tupinambá da Frota - Antônio Bezerra	107	Inundação
16 - COMUNIDADE DA CHESF (PONTE DO PAU DA VELHA) - Dom Lustosa	72	Inundação
13 - Travessa Maranguapinho - Antônio Bezerra	60	Inundação
102 - Parque São Vicente - Siqueira	53	Inundação
37 - Comunidade Demócrito Rocha	52	Inundação
17 - Beira do Rio II - Autran Nunes	43	Inundação
83 - Jardim Iracema - Barra do Ceará	43	Inundação
10 - Monte Rei - Quintino Cunha	38	Inundação
15 - Comunidade Alto do Bode - Antônio Bezerra	35	Inundação
101 - Conjunto Urucutuba - Bom Jardim	27	Alagamento
38 - Lagoa de Parangaba - Parangaba	24	Inundação

Fonte: Defesa Civil, PMF (2018)

ANEXO 5

LEVANTAMENTO DE EVENTOS CLIMÁTICOS NOTICIADOS EM FORTALEZA ENTRE 2005 - 2015

Levan	tamento	o de Ever	ntos Climáticos	Noticiados em Fo	ortaleza e	entre 2005 - 2015
Ano	Data	Tipo de Evento	Consequência	Bairros mais afetados	Fonte	Link para a notícia
2006	30.0 4.2 006		Temporal	Siqueira	Estad ão	http://brasil_estadao.com_br/noticia s/ geral,adolescente-desaparece- durante-temporal-em- fortaleza,20060501p27008
2008	24.0 1.2 008	Chuva - 50mm	Inundações, alagamentos e risco de desabamento	Parque dois Irmãos, Mucuripe, Genibaú, Vicente Pizon, Pirambu, Aerolândia, Centro	Diário do Norde ste	http://diariodonordeste.verdesma es. com.br/cadernos/cidade/chuva- com- raios-e-trovoes-assusta-os- fortalezenses-1.539475
2009	17.0 3.2 009	Chuva - 80mm	Deslizamento do Morro Santa Terezinha e desabamento de casas no Mucuripe	Vicente Pizon; Mucuripe;	UOL	https://noticias.uol.com.br/cotidiar o/2 009/03/17/ult5772u3257.jhtm
2009	19.0 5.2 009				UOL	https://noticias.uol.com.br/ultnot/a ge ncia/2009/05/19/ult4469u41446.jh tm
2010	31.0 5.2 010	Chuva - 87mm	Alagamentos em vários pontos da cidade	Vários pontos da cidade	Climat em po	https://www.climatempo.com.br/n tici a/fortaleza-registra-a-maior- chuva- em-24h-deste-ano
2010	16.0 7.2 010	Chuva		Bairro de Fátima		http://g1.globo.com/vc-no- g1/noticia/2010/07/chuva- provoca- pontos-de-alagamento- em- fortaleza.html
2011	05.0 1.2 011	Chuva - 135mm	Alagamentos em vários pontos da cidade	Parangaba, Demócrito Rocha, Montese, Praia de Iracema, Vicente Pizon, Centro	O Povo	https://www20.opovo.com.br/app.ort aleza/2011/01/05/noticiafortaleza 20 86054/chuva-de-135- milimetros- causa-transtomos-em fortaleza.shtml
			Asfalto cede e abre buraco	Meireles	G1	http://g1.globo.com/vc-no- g1/noticia/2011/01/apos-chuva- forte- asfalto-cede-em-avenida- de- fortaleza.html
2011	11.0 4.2 011	Chuva - 34mm	Desabamento da parede do canal da Av. Aguanambi	Bairro de Fátima	Diário do Norde ste	http://diariodonordeste.verdesma es. com.br/cadernos/cidade/fortaleza ainda-sofre-consequencia-da- chuva- 1.254635
2011	12.0 4.2 011	Chuva - 137mm	88 ocorrências em vários locais	Água Fria	Climat em po	https://www.climatempo.com.br/n tici a/fortaleza-registra-maior- chuva-de- 2011

2012	27.0 3.2 012	Chuva - 268,5m m	180 Ocorrências: 85 alagamentos,	Quintino Cunha - 18 ocorrências; Genibaú	O Povo	https://www20.opovo.com.br/app/ opo vo/fortaleza/2012/03/28/noticiasjor na
2012			61 inundações, 15 riscos de desabamento, 13 desabamentos, 4 quedas de árvores, 20 incêndiios	- 23 ocorrências e Dom Lustosa - 13 ocorrências. (Por Regional: SER I - 19 ocorrências; SER II - 9 ocorrências; SER III - 70 ocorrências; SER IV - 15 ocorrências; SER V - 47 ocorrências, SER VI - 20 ocorrências)		Ifortaleza,2809984/a-maior-chuva- dos-ultimos-15-anos.shtml
2012	22.0 6.2 012	Chuva - 121,2m m	Alagamentos em vários pontos da cidade	Centro, Joaquim Távora, Farias Brito, Pan Americano, Aerolândia;	G1	http://g1.globo.com/ceara/noticia/ 201_2/06/fortaleza-registra- segunda- maior-chuva-do-ano- nesta-sexta- feira.html
	012	""	Fechamento do Aeroporto	Aeroporto	G1	http://g1.globo.com/ceara/noticia/ 201 2/06/chuva-forte-cancela- pousos-no- aeroporto-de- fortaleza.html
2013	17.0 1.2 013	Ressac a do Mar - Ondas de até 3m	Alagamento	Beira Mar	G1	http://g1.globo.com/ceara/noticia/ 201_3/01/ressaca-danifica- calcadao-e- assusta-moradores- em-praia-de- fortaleza.html
2013	12.0 3.2 013	Ressac a do Mar	Alagamento	Beira Mar	O Povo	https://www20.opovo.com.br/app/ gal eria/2013/03/12/interna_galeria_fo to_s,720/confira-imagens-da- ressaca- do-mar-na-orla-de- fortaleza-na- tarde-desta- segunda-feira-12.shtml
			Alagamentos em vários pontos da	Papicu, Mondubim, Messejana, Castelão, Água	G1 e Tribun a do	http://g1.globo.com/ceara/notici_4/03/fortaleza-registra-maior-ch_do-ano-segundo-funceme.html>
			cidade	Fria	Ceará	http://tribunadoceara.uol.c omn.jcias/fortaleza-fortaleza-registra-chuva-ano/
2014	31.0 3.2 014	Chuva - 169mm	Desabamento do Teto do Hospital Geral; Inundação do Hospital Gonzaga Mota; Hospital César Calls; Hospital Waldemar de Alcântara; Hospital Gonzaguina do José Walter	Papicu; Centro; José Walter; Guajiru	Tribun a do Ceará	http://tribunadoceara.uol.com.br/notic ias/fortaleza/chuva-causa-desabamento-de-teto-no-hgf/

2015	03.0 1.2 015	Chuva - 148mm	Alagamento e Deslizamento (Morro Santa Terezinha)	Beira Mar, Papicu, Edson Queiroz, Varjota, Cidade dos Funcionários	G1	http://g1.globo.com/ceara/noticia/ 201 5/01/chuva-chegou-148- milimetros- em-fortaleza-segundo- funceme.html
2015	20.0 2.2 015	Ressac a do Mar	Alagamento	Beira Mar	G1 e O Povo	http://g1.globo.com/ceara/noticia/201_5/02/ressaca-do-mar-alaga-trecho- da-avenida-beira-mar-emfortaleza.html https://www20.opovo.com.br/app/fortaleza/2015/04/21/noticiafortaleza,34_26189/ressaca-do-mar-alaga-area-da-praia-de-iracema-nesta-terca-feira.shtml
2015	23.0 2.1 015	Chuva - 42mm	Alagamento	Centro	TV O Povo	https://www.youtube.com/watch?v =2 uASWQVJW3Q

Fonte: Elaboração própria